9,967 research outputs found

    Shallow grooves in journal improve air bearing performance

    Get PDF
    Bearing designs, which shape the surface to create artificial fluid-film wedges in the absence of any applied radial load, generate radial restoring forces to keep journals from whirling. Helical- or herringbone-grooved journals or rotors show most promise of stable operation, with no sacrifice in load capacity

    Experimental dynamic stiffness and damping of externally pressurized gas-lubricated journal bearings

    Get PDF
    A rigid vertical shaft was operated with known amounts of unbalance at speeds to 30,000 rpm and gas supply pressure ratios to 4.8. From measured amplitude and phase angle data, dynamic stiffness and damping coefficients of the bearings were determined. The measured stiffness was proportional to the supply pressure, while damping was little affected by supply pressure. Damping dropped rapidly as the fractional frequency whirl threshold was approached. A small-eccentricity analysis overpredicted the stiffness by 20 to 70 percent. Predicted damping was lower than measured at low speeds but higher at high speeds

    Experiments on rotating externally pressurized air journal bearings. Part 2 - Attitude angle and air flow

    Get PDF
    Air flow and attitude angle compared with theory for rotating externally pressurized air journal bearing

    Imaging analysis of LDEF craters

    Get PDF
    Two small craters in Al from the Long Duration Exposure Facility (LDEF) experiment tray A11E00F (no. 74, 119 micron diameter and no. 31, 158 micron diameter) were analyzed using Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), low voltage scanning electron microscopy (LVSEM), and SEM energy dispersive spectroscopy (EDS). High resolution images and sensitive elemental and molecular analysis were obtained with this combined approach. The result of these analyses are presented

    PARAMETER DEPENDENCE OF ACOUSTOELECTRIC AMPLIFICATION IN InSb

    Full text link
    On the basis of a hydrodynamical theory of the acoustoelectric interaction (Fleming-Rowe) reported earlier which included electron inertial terms it is found that for sufficiently large electron drift velocities sharp high-gain peaks occur. Furthermore the peak values of gain achieved greatly exceed the maximum gain of the corresponding theory of Steele. Excellent agreement with recently reported experimental measurements of microwave acoustic gain in InSb is obtained. It is also noted that for large applied fields, empirical field factors are required to give agreement with experiment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70684/2/APPLAB-18-3-96-1.pd

    Modelling Human Perception of High Gloss Materials using Neural Networks

    Get PDF

    Color-Octet Fragmentation and the psi' Surplus at the Tevatron

    Get PDF
    The production rate of prompt ψ′\psi''s at large transverse momentum at the Tevatron is larger than theoretical expectations by about a factor of 30. As a solution to this puzzle, we suggest that the dominant ψ′\psi' production mechanism is the fragmentation of a gluon into a ccˉc \bar c pair in a pointlike color-octet S-wave state, which subsequently evolves nonperturbatively into a ψ′\psi' plus light hadrons. The contribution to the fragmentation function from this process is enhanced by a short-distance factor of 1/αs21/\alpha_s^2 relative to the conventional color-singlet contribution. This may compensate for the suppression by v4v^4, where vv is the relative momentum of the charm quark in the ψ′\psi'. If this is indeed the dominant production mechanism at large pTp_T, then the prompt ψ′\psi''s that are observed at the Tevatron should almost always be associated with a jet of light hadrons.Comment: 9 pages, LaTe
    • …
    corecore